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Abstract. Spanning Cactus Existence Problem is NP-Complete for general Graphs. Here, the 

spanning cactus existence problem is studied for the Desargues graph. Desargues graph is the 

Generalized Petersen Graph G(10, 3). Here we have shown that there exists a spanning cactus in 

the Desargues graph. Further, it is shown that there exists only one spanning cactus which is a 

Hamiltonian cycle of the graph. 
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I. Introduction. 

Let G(V, E) be  a  connected  graph.  If  each  of  the  edges  in  G is contained in exactly one 

cycle, then the graph G(V, E) is called a  Cactus. Cactus graphs are well-studied graphs and have many 

applications such as in Networking [1][2][5], Genome comparison [18], etc. We say a graph G has a 

spanning cactus if there is  a  subgraph  in  G  which  is  a  cactus,  spanning  all the vertices of G. The 

Spanning cactus existence problem is the problem of testing whether G has a spanning cactus or not. 

The areas of applications of the problem also include the field of Networking, Electrical circuits, genome 

comparisons, etc. The Spanning Cactus Existence Problem is NP-complete in general graphs[15]. Palbom 

has shown that the directed spanning cactus prob- lem for general di-graphs is also NP-Complete[17]. 

There is a 2-approximation algorithm for the Minimum Cactus Extension Problem (MCEP) to extend a 

spanning forest to a spanning cactus when the edge costs satisfy the triangle inequality [7].   There is a τ -

approximation algorithm for the minimum span- ning cactus problem in general graphs [6]. The 

existence of a spanning Cactus is also studied for many special graphs.   In [9], the authors have shown 

that there exists a spanning cactus in the 3 × 3 × 3 Grid graph. Whereas in [8], it is shown that there 

does not exist any spanning Cactus for Petersen Graph. Here, I have studied the spanning cactus 

existence problem in the Desargues graph. It is shown that there exists a spanning cactus in the Desargues 

graph. Further, I have shown that this spanning cactus is unique. The result is use- ful as the graph 

has many applications in the areas such as Network circuits, Chemical Databases, etc. We have shown 

that there exists a spanning cactus in the Desargues graph. 

The Desergues graph and its properties are presented in section 2.  In sec- tion 3, I have shown 

that the Desergues graph has a spanning cactus. Further, I have shown that the spanning cactus is unique. 

The concluding remarks are presented in section 4. 
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II. Preliminaries. 

A cubic symmetric graph with 20 vertices  and  30  edges  is called a Desargues graph [19]. Figure 

1 presents a Desargues graph. The Desargues graph  is  distance-transitive  and  non-planar  [14].  

Bussemaker  et. al. have shown that there are exactly 13 connected, cubic integral graphs and Desargues 

graph is one of them [4]. Desargues graph is 3-unitransitive [13] and a unit-distance graph [12] [19] . It is 

also isomorphic to Generalized Petersen Graph GP (10, 3) [19][13]. The Generalized Petersen Graph GP 

(10, 3) can be formed by connecting the vertices of a regular decagon to the corresponding vertices of a 

ten-pointed star polygon [16]. More precisely, there are 10 vertices that form a regular decagon, and the 

other 10 vertices form another decagon that connects pairs of vertices at distance three which is a ten-

pointed star. There are edges with a vertex in one decagon to a corresponding vertex in the other, resulting 

in total of 30 edges in the graph as in Figure 1b. 
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Fig. 1: Desargues Graphs 

 

III. Proof of existence. 

A Hamiltonian Cycle in a graph G(V, E) is a simple cycle that visits every vertex v ∈ V (G) exactly 

once except the start vertex which is visited twice. A graph is called Hamiltonian if there exists a 

Hamiltonian cycle in it. The Hamiltonian Cycle problem is a well-known classical problem in Graph 

Theory. The problem is NP-complete for general Graph [10] [11]. In [3], the author has  proved that 

the  Generalized Petersen Graph (GP (10, 3)) is Hamiltonian Lemma 1. Consider the graph in 

Figure 1b. The sequence of vertices {A, B, 2, 5, E, F, 6, 9, I, J, 10, 3, C, D, 4, 7, G, H, 8, 1, A} is a 

Hamilto- nian cycle as shown in Figure 2a. 

LEMMA 1. [3] The Generalized Petersen Graph (GP (10, 3)) is Hamiltonian. 

 

The spanning cactus existence problem is related to the Hamiltonian cycle problem in the sense that the 

existence of the Hamiltonian cycle also proves the existence of a spanning cactus as the generated 

cycle will be a spanning 

 

 
Fig. 2: A Hamiltonian Cycle and the Spanning Cactus in the Desargues Graph with vertex labeling 

as shown in Figure 1b 

 

cactus in the given graph. 

 

THEOREM 2. Spanning cactus exists in the Desargues Graph. 

Proof. Since the existence of a Hamiltonian cycle also proves the existence of Spanning cactus, there 

exists a spanning cactus in the Generalized Petersen Graph GP (10, 3) by Lemma 1[3]. Since the 

Desargues Graph is isomorphic to the Generalized Petersen Graph GP (10, 3), a spanning cactus exists in 

it. In Figure 2b, a Spanning cactus is shown corresponding to the Desargues Graph with vertex labeling as 

shown in Figure 1b. And the subgraph induced by the edges in the Hamiltonian Cycle is the resultant 

spanning cactus as shown in Figure 2b. 

 

THEOREM 3. There exists a unique spanning cactus in the Desargues Graph. 

Proof. If possible, let C be a spanning cactus of the Desargues graph G which is not a Hamiltonian 

cycle. Then C must have a vertex v of degree 4. Since degree of the vertex v in G is exactly 3, v can 

not have degree 4 in C, a contradiction. 
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IV. Conclusion. 

I have shown that spanning cactus exists in the Desargues Graph. Further, I have shown that it is 

a Hamiltonian cycle and this span- ning cactus is unique. 
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